Автор конспекта:
Автор(ы): — Игнатенко Александр Анатольевич

Место работы, должность: — МОУ средняя общеобразовательная школа № 2 имени Н.И.Ковалёва города Невеля, учитель информатики и физики

Регион: — Псковская область

Характеристики урока (занятия) Уровень образования: — среднее (полное) общее образование

Целевая аудитория: — Учащийся (студент)

Класс(ы): — 10 класс
Класс(ы): — 11 класс

Предмет(ы): — Информатика и ИКТ

Цель урока: — • Формирование умения применять полученные знания на практике; • Развитие умения построения таблиц истинности по заданным формулам; • Развитие умения решать текстовые задачи с использованием законов логики.

Тип урока: — Урок комплексного применения ЗУН учащихся

Учеников в классе: — 23

Используемые учебники и учебные пособия: —

Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:»Обычная таблица»; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:»»; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:»Times New Roman»; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

1. Демонстрационные варианты ЕГЭ 2004-2009 гг.

2. ГусеваИ.Ю. ЕГЭ. Информатика: раздаточный материал тренировочных тестов. — СПб: Тригон, 2009.

Используемые ЦОР: —

CD. Информатика. Экспресс-подготовка к экзамену. / "Новая школа", 2006. www.new-school.ru

Краткое описание: — В настоящее время в текстах ЕГЭ по информатике есть много заданий по теме “алгебра логики”. Цель данного занятия – закрепление навыков решения заданий ЕГЭ по информатике с использованием элементов алгебры логики. 1. Повторение логических операций и законов. 2. Примение логических операций и законов на практике. 3. Объяснение домашнего задания. 4. Подведение итогов занятия.

Еще пример задания: v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:»Обычная таблица»; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:»»; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:»Times New Roman»; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} table.MsoTableGrid {mso-style-name:»Сетка таблицы»; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; border:solid windowtext 1.0pt; mso-border-alt:solid windowtext .5pt; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-border-insideh:.5pt solid windowtext; mso-border-insidev:.5pt solid windowtext; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:10.0pt; font-family:Calibri; mso-fareast-font-family:Calibri; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

B4 (высокий уровень, время – 10 мин)

Тема: Преобразование логических выражений.

Что нужно знать:

· условные обозначения логических операций

¬ A не A (отрицание, инверсия)

A Ù B A и B (логическое умножение, конъюнкция)

A Ú B A или B (логическое сложение, дизъюнкция)

AB импликация (следование)

AB эквиваленция (эквивалентность, равносильность)

· таблицы истинности логических операций «И», «ИЛИ», «НЕ», «импликация», «эквиваленция»

· операцию «импликация» можно выразить через «ИЛИ» и «НЕ»:

AB = ¬ A Ú B

· операцию «эквиваленция» также можно выразить через «ИЛИ» и «НЕ»:

AB = ¬ A Ù ¬ B Ú A Ù B

· если в выражении нет скобок, сначала выполняются все операции «НЕ», затем – «И», затем – «ИЛИ», и самая последняя – «импликация»

· логическое произведение ABC∙… равно 1 (выражение истинно) только тогда, когда все сомножители равны 1 (а в остальных случаях равно 0)

· логическая сумма A+B+C+… равна 0 (выражение ложно) только тогда, когда все слагаемые равны 0 (а в остальных случаях равна 1)

· правила преобразования логических выражений

Пример задания:

Каково наибольшее целое число X, при котором истинно высказывание

(50 < X·X) → (50 > (X+1)·(X+1))

Решение (вариант 1):

1) это операция импликации между двумя отношениями A=(50(X+1)2)

2) попробуем сначала решить неравенствf

3) вспомним таблицу истинности операции «импликация»:

A

B

A B

0

0

1

0

1

1

1

0

0

1

1

1

4) согласно таблице, заданное выражение истинно везде, кроме областей, где A=1 и B=0

5) поэтому наибольшее целое число, удовлетворяющее условию – это первое целое число, меньшее 7.1 , то есть, 7

6) таким образом, верный ответ – 7 .

Решение (вариант 2, преобразование выражения):

1) сначала можно преобразовать импликацию, выразив ее через «ИЛИ» и «НЕ»: A →B = не A + B

2) это значит, что выражение истинно там, где A=0 или B=1

3) дальнейшие действия точно такие же, как и в варианте 1.

Еще пример задания:

Сколько различных решений имеет уравнение

((K Ú L) → (L Ù M Ù N)) = 0

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа Вам нужно указать количество таких наборов.

Решение (вариант 1):

1) перепишем уравнение, используя более простые обозначения операций:

((K + L) → (L · M · N)) = 0

2) из таблицы истинности операции «импликация» (см. первую задачу) следует, что это равенство верно тогда и только тогда, когда одновременно

K + L = 1 и L · M · N = 0

3) из первого уравнения следует, что хотя бы одна из переменных, K или L равна 1 (или обе вместе); поэтому рассмотрим три случая

4) если K = 1 и L = 0, то второе равенство выполняется при любых М и N; поскольку существует 4 комбинации двух логических переменных (00, 01, 10 и 11), имеем 4 разных решения

5) если K = 1 и L = 1, то второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

6) если K = 0, то обязательно L = 1 (из первого уравнения); при этом второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

7) таким образом, всего получаем 4 + 3 + 3 = 10 решений.

Еще пример задания:

Укажите значения переменных К, L, M, N, при которых логическое выражение

(¬(М Ú L) Ù К) → (¬К Ù ¬М) Ú N)

ложно. Ответ запишите в виде строки из 4 символов: значений переменных К, L, М и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что К=1, L=1, M=0, N=1.

Решение (анализ исходного выражения):

1) запишем уравнение, используя более простые обозначения операций (условие «выражение ложно» означает, что оно равно логическому нулю):

(не(M +L) . K) (не K . не M + N) = 0

2) из формулировки условия следует, что выражение должно быть ложно только для одного набора переменных

3) из таблицы истинности операции «импликация» (см. первую задачу) следует, что это выражение ложно тогда и только тогда, когда одновременно

(не(M +L) . K) = 1 и (не K . не M + N) = 0

4) первое равенство (логическое произведение равно 1) выполняется тогда и только тогда, когда K=1и не(M +L)=1 ; отсюда следует M+L=0 (логическая сумма равна нулю), что может быть только при M= L = 0 ; таким образом, три переменных мы уже определили

5) из второго условия, (не K . не M + N) = 0 , при K=1 и M=1 получаем N=0

6) таким образом, правильный ответ – 1000.

Еще пример задания:

Составьте таблицу истинности для логической функции

X = (А ↔ B) Ú ¬(A (B Ú C))

в которой столбец значений аргумента А представляет собой двоичную запись числа 27, столбец значений аргумента В – числа 77, столбец значений аргумента С – числа 120. Число в столбце записывается сверху вниз от старшего разряда к младшему. Переведите полученную двоичную запись значений функции X в десятичную систему счисления.

Решение (вариант 1):

1) запишем уравнение, используя более простые обозначения операций:

X = (A ↔ B) + не(A → (B+C))

2) это выражение с тремя переменными, поэтому в таблице истинности будет 23=8 строчек; следовательно, двоичная запись чисел, по которым строятся столбцы таблицы А, В и С, должна состоять из 8 цифр

А

В

С

X

0

0

0

0

1

1

0

0

1

1

0

1

1

1

1

0

1

0

1

0

0

1

1

0

3) переведем числа 27, 77 и 120 в двоичную систему, сразу дополняя запись до 8 знаков нулями в начале чисел

27 = 000110112 77 = 010011012 120 = 011110002

4) теперь можно составить таблицу истинности (см. рисунок справа), в которой строки переставлены в сравнении с традиционным порядком; зеленым фоном выделена двоичная записи числа 27 (биты записываются сверху вниз), синим – запись числа 77 и розовым – запись числа 120:

5) вряд ли вы сможете сразу написать значения функции Х для каждой комбинации, поэтому удобно добавить в таблицу дополнительные столбцы для расчета промежуточных результатов (см. таблицу ниже)

6) заполняем столбцы таблицы:

А

В

С

A ↔ B

B+C

A→(B+C)

не(A→(B+C))

X

0

0

0

1

0

1

0

1

0

1

1

0

1

1

0

0

0

0

1

1

1

1

0

1

1

0

1

0

1

1

0

0

1

1

1

1

1

1

0

1

0

1

0

0

1

1

0

0

1

0

0

0

0

0

1

1

1

1

0

1

1

1

0

1

значение A ↔ B равно 1 только в тех строчках, где А = В

значение B+C равно 1 только в тех строчках, где В = 1 или С = 1

значение A→(B+C) равно 0 только в тех строчках, где А = 1 и В + С = 0

значение не(A→(B+C)) это инверсия предыдущего столбца (0 заменяется на 1, а 1 – на 0)

результат Х (последний столбец) – это логическая сумма двух столбцов, выделенных фиолетовым фоном

7) чтобы получить ответ, выписываем биты из столбца Х сверху вниз: Х = 101010112

8) переводим это число в десятичную систему: 101010112 = 27 + 25 + 23 + 21 + 20 = 171

9) таким образом, правильный ответ – 171.

(Проверьте, что обычно (когда комбинации располагаются по возрастанию соответствующих двоичных чисел), столбец значений аргумента А представляет собой двоичную запись числа 15 = 11112, столбец значений аргумента В – числа 51 = 1100112, столбец значений аргумента С – числа 85 = 101010102.)

Решение (вариант 2, преобразование логической функции):

1) выполним пп.1-5 так же, как и в предыдущем способе

2) запишем уравнение, используя более простые обозначения операций: X = (А ↔ B) Ú ¬(A (B Ú C))

3) раскроем импликацию через операции И, ИЛИ и НЕ ( А ↔ B = неA + B): A (B Ú C) = неA+B+C

4) раскроем инверсию для выражения A (B Ú C) = неA+B+C по формуле де Моргана:

не(A (B Ú C)) = не(неA +B+C) = A . неB . неC

5) таким образом, выражение приобретает вид X = (А ↔ B) + A . неB. неC

6) отсюда сразу видно, что Х = 1 только тогда, когда А = В или (А = 1 и В = С = 0):

А

В

С

X

Примечание

0

0

0

1

А = В

0

1

1

0

0

0

1

1

А = В

1

0

1

0

1

1

1

1

А = В

0

1

0

0

1

0

0

1

А = 1, В = С = 0

1

1

0

1

А = В

7) чтобы получить ответ, выписываем биты из столбца Х сверху вниз: Х = 101010112

8) переводим это число в десятичную систему: 101010112 = 27 + 25 + 23 + 21 + 20 = 171

9) таким образом, правильный ответ – 171.

Задачи для тренировки:

1) Каково наибольшее целое число X, при котором истинно высказывание

(90 < X·X) (X < (X-1))

2) Сколько различных решений имеет уравнение

(K Ù L Ù M) Ú (¬L Ù ¬M Ù N) = 1

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

3) Укажите значения переменных K, L, M, N, при которых логическое выражение

(¬K Ú M) (¬L Ú M Ú N)

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

4) Каково наименьшее целое положительное число X, при котором высказывание:

(4 > -(4 + XX)) (30 > X·X)

будет ложным.

5) Каково наибольшее целое положительное число X, при котором истинно высказывание:

((X - 1) < X) (40 > X·X)

6) Укажите значения переменных K, L, M, N, при которых логическое выражение

(M Ú L) Ù K) ((¬K Ù ¬M) Ú N)

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

7) Каково наименьшее натуральное число X, при котором высказывание

¬(X·X < 9) (X >(X + 2))

будет ложным?

8) Укажите значения логических переменных Р, Q, S, Т, при которых логическое выражение

Ú ¬Q) Ú (Q (S Ú Т))

ложно. Ответ запишите в виде строки из четырех символов: значений переменных Р, Q, S, T (в указанном порядке).

9) Каково наибольшее целое положительное число X, при котором высказывание:

((X + 6)·X + 9 > 0) (X·X > 20)

будет ложным?

10) Составьте таблицу истинности для логической функции

X = (А B) Ù (C ↔ ¬(B Ú A))

в которой столбец значений аргумента А представляет собой двоичную запись числа 226, столбец значений аргумента В – числа 154, столбец значений аргумента С – числа 75. Число в столбце записывается сверху вниз от старшего разряда к младшему. Переведите полученную двоичную запись значений функции X в десятичную систему счисления.

11) Составьте таблицу истинности для логической функции

X = ¬(А B) Ù (B ↔ ¬(C A))

в которой столбец значений аргумента А представляет собой двоичную запись числа 216, столбец значений аргумента В – числа 30, столбец значений аргумента С – числа 170. Число в столбце записывается сверху вниз от старшего разряда к младшему. Переведите полученную двоичную запись значений функции X в десятичную систему счисления.

Файлы: конспект урока 9 класс.doc
Размер файла: 55296 байт.

( план – конспект урока 1 класс 5 класс. 6 класс 7 класс 8 класс 9 класс 10 класс Английский язык Литературное чтение Математика Музыка ОБЖ Окружающий мир Оренбургская область Физика ЦОР алгебра биология викторина внеклассное мероприятие география геометрия здоровье игра информатика история классный час конкурс конспект урока краеведение кроссворд литература начальная школа обществознание презентация программа проект рабочая программа русский язык тест технология урок химия экология